
JTRS SINCGARS Physical API Service Definition

V1.0
December 15, 2000

Prepared for the
Joint Tactical Radio System (JTRS) Joint Program Office

Prepared by the
Modular Software-programmable Radio Consortium

Under Contract No. DAAB15-00-3-0001

JTRS SINCGARS Physical API
rev. 1.0

Revision Summary
1.0 Initial release

JTRS SINCGARS Physical API
rev. 1.0

i

Table Of Contents

1 INTRODUCTION. ... 1
1.1 OVERVIEW. .. 1
1.2 SERVICE LAYER DESCRIPTION. ... 2
1.3 MODES OF SERVICE... 2
1.4 SERVICE STATES.. 2
1.5 REFERENCED DOCUMENTS... 3

2 UUID... 3
3 SERVICES.. 4

3.1 NON-REAL-TIME SERVICES... 6
3.1.1 Antenna Control.. 6
3.1.2 TransceiverSetup. ... 7
3.1.3 ModulationSetup... 8
3.1.4 RadioMode. .. 10
3.1.5 ReceiveTermination.. 12
3.1.6 TransmitInhibit. .. 13
3.1.7 PhysicalManagement.. 14

3.2 REAL-TIME SERVICES... 15
3.2.1 Transmit Packet Service Group. ... 15
3.2.2 Downstream Flow Control Service Group. .. 17
3.2.3 Receive Packet Service Group.. 18
3.2.4 Upstream Flow Control Service Group. ... 20
3.2.5 PacketSignals.. 21

4 SERVICE PRIMITIVES... 22
4.1 NON-REAL TIME SERVICE PRIMITIVES.. 22

4.1.1 Antenna Control.. 22
4.1.2 Transceiver Setup. .. 24
4.1.3 Modulation Setup.. 27
4.1.4 Radio Mode. ... 30
4.1.5 Receive Termination... 31
4.1.6 Transmit Inhibit. ... 32
4.1.7 Physical Management... 33

4.2 REAL TIME SERVICE PRIMITIVES.. 35
4.2.1 Transmit Packet Service Group. ... 35
4.2.2 Receive Packet Service Group.. 40

5 ALLOWABLE SEQUENCE OF SERVICE PRIMITIVES..................................... 47
6 UTILIZATION OF MAC BUILDING BLOCKS.. 48
7 PRECEDENCE OF SERVICE PRIMITIVES.. 49
8 SERVICE USER GUIDELINES. ... 49
9 SERVICE PROVIDER-SPECIFIC INFORMATION. .. 49
10 IDL. ... 50

10.1 COMMON TYPES... 50
10.2 COMMON INTERFACES... 52
10.3 NON-REAL TIME. .. 55
10.4 REAL TIME. .. 59

JTRS SINCGARS Physical API
rev. 1.0

ii

11 UML.. 63

List of Figures

Figure 1-1. Service Definition Overview... 1
Figure 3-1. SINCGARS Antenna Control... 6
Figure 3-2. SINCGARS Transceiver Setup ... 7
Figure 3-3. SINCGARS Modulation Setup ... 9
Figure 3-4. SINCGARS Radio Modes... 10
Figure 3-5. SINCGARS Radio Mode State Diagram.. 11
Figure 3-6. SINCGARS ReceiveTermination... 12
Figure 3-7. Transmit Inhibit Interface.. 13
Figure 3-8. SINCGARS Physical Management... 14
Figure 3-9. Physical Layer DownStream Packet... 16
Figure 3-10. Physical Layer UpStream Packet .. 19

List of Tables

Table 1. Cross-Reference of Services and Primitives.. 4

JTRS SINCGARS Physical API
rev. 1.0

1

1 INTRODUCTION.

1.1 OVERVIEW.

The SINCGARS Physical application-program interface (API) provides a standardized
interface to the Physical Layer. The Physical Layer Services are grouped into real time
and non-real time Service Groups. The non-real-time Physical-Layer services provide
Service Users with methods to send non-real-time configuration and control data into the
Physical Layer. Real-time control and real-time signals are time critical signals to and
from the Physical Layer.

Location of the Physical Layer, with respect to other JTRS layers, is shown in Figure 1-1.
The Physical non-real-time is the "B" interface into the Physical Layer. The Physical
real-time is the "A" interface. In reality, these are the same interface, but it helps
conceptually to think of them as different interfaces based on the type of service
provided.

I/O

Network

Physical

A

B

Waveform
Application

A Data and Real-time
Control

B Non-real-time Control,
Setup and Initialization,
from applications, other
levels, user interface

Ethernet

LLC LLC

MAC

A

B

A

B

A

B

A

B

External
Network

Connection

Figure 1-1. Service Definition Overview

JTRS SINCGARS Physical API
rev. 1.0

2

Reader Notes:
1. In the current version of this document, exceptions are not fully specified. This

should not be interpreted to mean that methods cannot raise exceptions. Exceptions
will be defined as the design progresses to conform with SCA requirements and good
SW Engineering practice and be documented in a later version of this document.

2. This document contains TBDs where values cannot be determined this early in the
design process.

1.2 SERVICE LAYER DESCRIPTION.

The primary Physical Layer Service User is the MAC Layer.

This part of the SINCGARS API is realized by instantiating the SCA Physical non-real-
time, Physical real-time, and Packet Building Blocks using SINCGARS specific
parameters. In general, the Physical Layer is responsible for the modulation and
demodulation of data and for transmitting bits over-the-air. The following Service
Groups are included in the Physical Layer.

• Physical non-real time:

• antenna control

• transceiver setup

• modulation setup

• radio mode

• receive termination

• transmit inhibit

• physical management.

• Physical real time:

• Transmit Packet (data movement into Physical Layer toward antenna)

• Receive Packet (data movement out of the Physical Layer away from
antenna)

• Flow Control.

Each Service Group will be described in detail.

1.3 MODES OF SERVICE.

This API is used for all transmit and receive modes and for some BIT modes.

1.4 SERVICE STATES.

The API is used for all modes of operations except standby.

JTRS SINCGARS Physical API
rev. 1.0

3

1.5 REFERENCED DOCUMENTS.

Document No. Document Title

MSRC-5000SCA Software Communications Architecture
Specification

MSRC-5000API Application Program Interface Supplement to
the Software Communications Architecture
Specification, Appendix C Generic Packet
Building Block Service Definition

MSRC-5000API Application Program Interface Supplement to
the Software Communications Architecture
Specification, Appendix E Physical Non-Real-
Time Building Block Service Definition

MSRC-5000API Application Program Interface Supplement to
the Software Communications Architecture
Specification, Appendix D Physical Real-Time
Building Block Service Definition

2 UUID.

The UUID for this API is 62fb9f70-d1d3-11d4-8cc8-00104b23b8a2.

JTRS SINCGARS Physical API
rev. 1.0

4

3 SERVICES.

The SINCGARS Physical interface is defined in terms of the services provided by the
Service Provider, and the individual primitives that may flow between the Service User
and Service Provider.

The services are tabulated in Table 1 and described more fully in the remainder of this
section and section 4.

Table 1. Cross-Reference of Services and Primitives

NON-REAL TIME SERVICES

Service Group Service Primitives or Structure Attributes

Set Receive Antenna setRxAntenna(Antenna : in
SINCGARSAntennaType) : boolean

Antenna Control

Set Transmit Antenna setTxAntenna(Antenna: in
SINCGARSAntennaType) : boolean

Set Up Receiver
Parameters

setUpReceiverParams(RecvParams : in
SINCGARSRecvParamsType) : boolean

Set Up Transmetter
Parameters

setUpTransmitterParams(TransParams :
in SINCGARSTransParamsType) :
boolean

Get BIT Results getBIT(BITResult : out
SINCGARSAPI::CommonTypes::OctetS
equence) : Void

Transceiver Setup

Perform BIT test performBIT(BITIdentifier : in unsigned
long) : void

Set Up Receiver
Modulation

setUpReceiverModulation(RecvMod : in
SINCGARSRecvModType) : boolean

Modulation Setup

Set Up Transmitter
Modulation

setUpTransmitterModulation(TransMod
: SINCGARSTransModType) : boolean

Radio Mode Set Radio Mode setRadioMode(RadioMode : in
SINCGARSRadioModeType) : boolean

Drop Capture dropCapture() : booleanReceive Termination
Abort Receive abortReceive() : boolean

Transmit Inhibit Inhibit Transmit inhibitTransmit(Inhibit : in boolean) :
boolean

Maximum Transmission
Unit

getMaxTU() : unsigned shortPhysical Management

Minimum Transmission
Unit

getMinTU() : unsigned short

JTRS SINCGARS Physical API
rev. 1.0

5

Table 1. Cross-Reference of Services and Primitives - Continued

REAL TIME SERVICES

Service Group Service Primitives or Structure Attributes
DownStreamPacket pushPacket(priority : in octet, transmitControl

: in PhysicalDownStreamControlType,
payload : in
SINCGARSAPI::CommonTypes::OctetSeque
nce)void

PhysicalDownstream
ControlType

hopTimeOfFirstSymbol,
frequencyInHz,
StreamControlType

Transmit Packet
(packets sent
from MAC
Layer to
Physical Layer)

StreamControlType EndOfStream,
StreamID,
SequenceNum,

UpStreamPacket pushPacket(priority : octet, control : in
PhysicalUpstreamControlType, payload : in
SINCGARSAPI::CommonTypes::OctetSeque
nce)

PhysicalUpstreamCo
ntrolType

hopTimeOfFirstSymbol,
noiseSignalStrength,
receiveSignalStrength,
transmitSignalStrength,
streamControlType

Receive Packet
(received
packets sent
from Physical
Layer to MAC
Layer.

StreamControlType EndOfStream,
StreamID,
SequenceNum,

PacketQueueSetUp enableFlowControlSignals(enable : in
boolean) : void

enableEmptySignal(enable : boolean) : void

spaceAvailable(priorityQueueID : in octet) :
unsigned short

setNumOfPriorityQueues(numOfPriorities : in
octet) : void

Flow Control
(upstream &
downstream)

PacketQueueSignals signalHighWatermark(priorityQueueID : in
octet) void

signalLowWaterMark(priorityQueueID : in
octet) void

signalEmpty()void

JTRS SINCGARS Physical API
rev. 1.0

6

3.1 NON-REAL-TIME SERVICES.

3.1.1 Antenna Control.

Antenna control selects which antennas are to be connected to the SINCGARS
waveform. Refer to Figure 3-1 and the following paragraphs to describe the antenna
control process.

AntennaType

AntennaControl

setRxAntenna(Antenna : in AntennaType) : boolean
setTxAntenna(Antenna : in AntennaType) : boolean

(from CommonInterfaces)

<<API Building Block>>

SINCGARSAntennaType
AntennaConnector1
AntennaConnector2
AntennaConnector3
AntennaConnector4

<<CORBAEnum>>

SINCGARSAntennaControl

setRxAntenna(Antenna : in SINCGARSAntennaType) : boolean
setTxAntenna(Antenna : in SINCGARSAntennaType) : boolean

<<Interface>>

Figure 3-1. SINCGARS Antenna Control

3.1.1.1 setRxAntenna Service.
The setRxAntenna Service allows the radio to select the receive antenna. The receive
antenna may be the same as the transmit antenna or may be different.

3.1.1.2 setTxAntenna Service.
The setTxAntenna Service allows the radio to select the transmit antenna. The transmit
antenna may be the same as the receive antenna or may be different.

JTRS SINCGARS Physical API
rev. 1.0

7

3.1.2 TransceiverSetup.

This class sets up parameters in the Physical Layer which are not modulation or real-time
dependent. Refer to Figure 3-2.

SINCGARSTransceiverSetu
pBIT : boolean

setUpReceiverParams(RecvParams : in SINCGARSRecvParamsType) : boolean
setUpTransmitterParams(TransParams : in SINCGARSTransParamsType) : boolean
getBIT(BITResult : out SINCGARSAPI::CommonTypes::OctetSequence) : void
performBIT(BITIdentifier : in unsigned long) : void

<<Interface>>

SINCGARSRecvParamsTyp
eBWInkHz : unsigned short
carrierThreshold : unsigned short
bitsPerSymbol : unsigned short

<<CORBAStruct>>
SINCGARSTransParamsTyp
e BWInkHz : unsigned short

offRampTime : unsigned long
onRampTime : unsigned long

<<CORBAStruct>>

RecvParamsType
TransParamsType

TransceiverSetup

setUpReceiverParams(RecvParams : in RecvParamsType) : boolean
setUpTransmitterParams(TransParams : in TransParamsType) : boolean

(from CommonInterfaces)

<<API Building Block>>

BWInkHz
should be 25

Figure 3-2. SINCGARS Transceiver Setup

3.1.2.1 setUpReceiverParams.
setUpReceiverParams sets the receive channel bandwidth to 25 kHz, sets carrier
threshold to TBD, and sets bits per symbol to TBD.

JTRS SINCGARS Physical API
rev. 1.0

8

3.1.2.2 setUpTransmitterParams.
sSetUpTransmitterParams sets the transmit channel bandwidth to 25 kHz, sets
offRampTime to TBD microseconds, and sets onRampTime to TBD microseconds.

3.1.2.3 getBIT Results.
getBIT returns the results of the last execution of performBIT .

3.1.2.4 performBIT.
peformBIT invokes BIT at the Physical Layer.

3.1.3 ModulationSetup.

ModulationSetup (Figure 3-3) selects the SINCGARS modulation and demodulation
methods and sets the required parameters for both.

3.1.3.1 setUpReceiverModulation.
setUpReceiverModulation sets the demodulator to receive FSK alone, FM alone, or either
FSK or FM whichever is received. FM modulation is for single channel, plain text voice
only. This method provides the peak-to-peak deviation for FSK and FM, and the
subaudible tone deviation for SC PT Voice.

3.1.3.2 setUpTransmitterModulation.
setUpTransmitterModulation sets the modulator for FSK or FM. FM modulation is for
single channel, plain text voice only. This method provides the peak-to-peak deviation
for FSK and FM, and the subaudible tone deviation for SC PT Voice.

JTRS SINCGARS Physical API
rev. 1.0

9

S I N C G A R S M o d u l a t i o n S e t u p

s e t U p R e c e i v e r M o d u l a t i o n (R e c v M o d : i n S I N C G A R S R e c v M o d T y p e) : b o o l e a n
s e t U p T r a n s m i t t e r M o d u l a t i o n (T r a n s M o d : i n S I N C G A R S T r a n s M o d T y p e) : b o o l e a n

< < I n t e r f a c e > >

S I N C G A R S R e c v M o d T y p e
R x F M V o i c e M o d : F M V o i c e T y p e
R x F S K M o d : F S K T y p e

< < C O R B A U n i o n > >

ToneDev ia t i onType
M i n D e v H z : u n s i g n e d s h o r t
M a x D e v H z : u n s i g n e d s h o r t

< < C O R B A S t r u c t > >
V o i c e D e v i a t i o n T y p e

M i n D e v k H z : u n s i g n e d s h o r t
M a x D e v k H z : u n s i g n e d s h o r t

< < C O R B A S t r u c t > >

F S K T y p e
M i n D e v H z : u n s i g n e d s h o r t
M a x D e v H z : u n s i g n e d s h o r t

< < C O R B A S t r u c t > >

S I N C G A R S T r a n s M o d T y p e
T x F M V o i c e M o d : F M V o i c e T y p e
T x F S K M o d : F S K T y p e

< < C O R B A U n i o n > >

F M V o i c e T y p e
V o i c e D e v i a t i o n : V o i c e D e v i a t i o n T y p e
T o n e D e v i a t i o n : T o n e D e v i a t i o n T y p e

< < C O R B A S t r u c t > >

R e c v M o d T y p e
T r a n s M o d T y p e

M o d u l a t i o n S e t u p

s e t U p R e c e i v e r M o d u l a t i o n (R e c v M o d : i n R e c v M o d T y p e) : b o o l e a n
s e t U p T r a n s m i t t e r M o d u l a t i o n (T r a n s M o d : i n T r a n s M o d T y p e) : b o o l e a n

(f r o m C o m m o n I n t e r f a c e s)

< < A P I B u i l d i n g B l o c k > >

M i n D e v H z s h o u l d b e 6 5 0 0 a n d
M a x D e v H z s h o u l d b e 7 5 0 0

M i n D e v k H z s h o u l d b e 1 6 a n d
M a x D e v k H z s h o u l d b e 2 2

M i n D e v H z s h o u l d b e 9 5 0 0 a n d
M a x D e v H z s h o u l d b e 1 4 0 0 0

Figure 3-3. SINCGARS Modulation Setup

JTRS SINCGARS Physical API
rev. 1.0

10

3.1.4 RadioMode.

RadioMode (Figure 3-4) as it applies to the Physical Layer, sets the Physical Layer to
off, standby, operate, or test mode.

RadioModeType

RadioMode

setRadioMode(RadioMode : in RadioModeType) : boolean

(from CommonInterfaces)

<<API Building Block>>

SINCGARSRadioMode

setRadioMode(RadioMode : in SINCGARSRadioModeType) : boolean

<<Interface>>

SINCGARSRadioModeType
Off
Standby
Operate
Test

<<CORBAEnum>>

Figure 3-4. SINCGARS Radio Modes

These modes are defined as follows:

Off:

means that the waveform is no longer active on the transceiver. Power may
be turned off to the Physical Layer, if possible.

Standby:

means that all TRANSEC, Crypto, and other variables are maintained, but
transmit or receive is not allowed. Physical Layer put into a low power.

JTRS SINCGARS Physical API
rev. 1.0

11

Operate:

is normal operation, transmit and receive operations allowed.

Test:

is a special mode of the radio to verify correct operation. Normal transmit
and receive are disabled, but test transmit and testr receive can occur.

3.1.4.1 setRadioMode.
setRadioMode sets the Physical layer to either standby, operate, test, or off according the
state diagram shown in Figure 3-5.

PowerOn

PowerOff

Standby

TestOperate

Figure 3-5. SINCGARS Radio Mode State Diagram

JTRS SINCGARS Physical API
rev. 1.0

12

3.1.5 ReceiveTermination.

ReceiveTermination (Figure 3-6) inherits and instantiates ReceiveTermination directly.
This service is used to terminate ongoing receptions or to disable all receptions.

SINCGARSReceiveTermination
<<Interface>>

ReceiveTermination

dropCapture() : boolean
abortReceive() : boolean

(from CommonInterfaces)

<<Interface>>

Figure 3-6. SINCGARS ReceiveTermination

3.1.5.1 dropCapture.
dropCapture terminates an ongoing reception and starts a transmit operation.

3.1.5.2 abortReceive.
abortReceive turns off the receive function.

JTRS SINCGARS Physical API
rev. 1.0

13

3.1.6 TransmitInhibit.

This service group (Figure 3-7) allows the JTRS platform to enforce radio silence on
specified waveform transmitters.

SINCGARSTransmitInhibit
<<Interface>>

TransmitInhibit

inhibitTransmit(Inhibit : in boolean) : boolean

(from CommonInterfaces)

<<Interface>>

Figure 3-7. Transmit Inhibit Interface

3.1.6.1 inhibitTransmit.
inhibitTransmit is used to invoke radio silence on this SINCGARS transmitter in the
JTRS platform. To invoke radio silence, the JTRS platform must invoke transmit inhibit
on all active waveforms hosted on the platform.

JTRS SINCGARS Physical API
rev. 1.0

14

3.1.7 PhysicalManagement.

PhysicalManagement (Figure 3-8) provides the user with the maximum and minimum
transmission units that may be sent by the Physical Layer in one over-the-air
transmission.

SINCGARSPhysicalManagement
<<Interface>>

PhysicalManagement

maxTU : unsigned short
minTU : unsigned short

(from CommonInterfaces)

<<Interface>>

Figure 3-8. SINCGARS Physical Management

3.1.7.1 PhysicalManagement.
PhysicalManagement receives the maximum and minimum Transmission Unit(TU) sizes
when the waveform is instantiated. These parameter values can not be changed.

The Transmission Unit is the over-the-air information size in octets. For packet, it is
equivalent to the maximum packet size, which SINCGARS can transmit. For continuous
voice or continuous data modes, this parameter is ignored since these modes can operate
the radio continuously.

3.1.7.1.1 Get Minimum Number of Transmission Units Service.
Get Minimum Number of Transmission Units Service returns the minimum number of
Transmission Units that can be sent in one over-the-air transmission by the Physical
Layer. This is a read-only method. The SINCGARS Transmission Unit is an octet. The
minimum number of Transmission Units for SINCGARS is 1800 octets.

3.1.7.1.2 Get Maximum Number of Transmission Units Service.
Get Maximum Number of Transmission Units Service returns the maximum number of
Transmission Units that will be sent in one over-the-air transmission by the Physical
Layer. This is a read-only method. The SINCGARS Transmission Unit is an octet. The
maximum number of Transmission Units for SINCGARS is 45 octets in Single Channel
and 180 octets in Frequency Hop.

JTRS SINCGARS Physical API
rev. 1.0

15

3.2 REAL-TIME SERVICES.

Real-time control and data will be pushed upstream and downstream using control and
data packets. The data packets include a control header for transferring real time control
information with the data. These services are obtained from the Packet and Packet
Signals Building Blocks. Refer to the SCA Service Definition Description for the Packet
and Packet Signals Building Blocks.

In the current version of this document, exceptions are not fully specified. This should
not be interpreted to mean that the methods cannot raise exceptions. Exceptions will be
defined in later revisions to conform with SCA requirements and good SW Engineering
practice.

3.2.1 Transmit Packet Service Group.

The SINCGARSPhysicalDownStreamProviderQueue inherits many parameters from the
Packet and Packet Signals Building Blocks. The downstream Packet controls the
operating frequency (receive or transmit) and provides the over-the-air data for transmit.
It also provides the exact time for changing the operating frequency. Refer to Figure 3-9
for the discussion.

3.2.1.1 pushPacket Service (downstream).
The pushPacket operation is used to send real time data and frequency information down
from the MAC Layer to the Physical Layer. This method identifies which priority queue
the data is destined for and identifies the time for transmitting the first over-the-air
symbol when required. Implicitly, this defines when the current frequency is to be
updated to a new frequency and specifies the new frequency.

3.2.1.2 maxPayloadSize.
maxPayloadSize defines the maximum size of Payload in octets. This attribute allows the
Service Provider to bound its internal memory usage. The Maximum Payload Size
supported by the SINCGARSPhysicalDownstreamServiceProvider is 180 octets. This is
a read-only parameter.

3.2.1.3 minPayloadSize.
minPayloadSize defines the minimum size of the downstream Payload in octets. The
Minimum Payload Size supported by the
SINCGARSPhysicalDownstreamServiceProvider is 45 octets. This is a read-only
parameter.

3.2.1.4 priority.
priority defines which priority Physical queue the packet is destined for. (The
determination to use this parameter will be made later in the design process.)

JT
R

S SIN
C

G
A

R
S Physical A

PI
rev. 1.0

16

PacketSignals

signalHighWatermark(priorityQueueID : in octet) : void
signalLowWaterMark(priorityQueueID : in octet) : void
signalEmpty() : void

(from CommonInterfaces)

<<Interface>>

ControlType
PayloadType

Packet

maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(priority : in octet, control : in ControlType, payload : in PayloadType) : void
spaceAvailable(priorityQueueID : in octet) : unsigned short
enableFlowControlSignals(enable : in boolean) : void
enableEmptySignal(enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

(from CommonInterfaces)

<<API Building Block>>

SINCGARSPhysicalDownStreamProvider
<<Interface>>

SINCGARSPhysicalDownStreamProviderQueue
maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(priority : in octet, transmitControl : in PhysicalDownStreamControlType, payload : in SINCGARSAPI::CommonTypes::OctetSequence) : void
spaceAvailable(priorityQueueID : in octet) : unsigned short
enableFlowControlSignals(enable : in boolean) : void
enableEmptySignal(enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

<<Interface>>

PhysicalDownStreamControlType
hopTimeOffFirstSymbol : SINCGARSAPI::CommonTypes::TimeType
frequencyInHz : unsigned long

<<CORBAStruct>> StreamControlType

endOfStream : boolean
streamID : unsigned short
sequenceNum : octet

(from CommonTypes)

<<CORBAStruct>>

Figure 3-9. Physical Layer DownStream Packet

JTRS SINCGARS Physical API
rev. 1.0

17

3.2.1.5 hopTimeOfFirstSymbol.
hopTimeOfFirstSymbol is the time stamp in the future when transmit should begin in
seconds to the nanosecond resolution. It implicitly defines when the operating frequency
is to be updated to the new operating frequency.

3.2.1.6 frequencyInHz.
frequencyInHz is the frequency to tune for the duration of the hop or until updated. If set
to zero, the frequency is unchanged.

3.2.1.7 streamID.
Each stream has a unique streamID (modulo the resolution of the streamID variable).
(The determination to use this parameter will be made later in the design process.)

3.2.1.8 Sequence Number.
"sequenceNum" identifies the order of the pushPackets within a stream. The first
pushPacket always has sequence number zero. (The determination to use this
parameter will be made later in the design process.)

3.2.1.9 endOfStream.
endOfStream identifies the last pushPacket in a stream. Note that for a short stream, a
single pushPacket contains both the streamID and the end of stream. (The
determination to use this parameter will be made later in the design process.)

3.2.1.10 payload.
payload inherits octetSequence from SINCGARSAPI::CommonTypes for transferring
data to the Physical Layer.

3.2.2 Downstream Flow Control Service Group.

3.2.2.1 spaceAvailable.
spaceAvailable is inherited from the Packet BB. It requests the space currently available
in the specified priority queue in octets.

3.2.2.1.1 priorityQueueID.
priorityQueueID identifies the queue where space available is being interrogated.

3.2.2.2 enableFlowControlSignals.
enableFlowControlSignals enable signalHighWaterMark and signalLowWaterMark
signals to be sent back to the Service User when the data in any downstream queue
exceeds the High Water Mark or goes below the Low Water Mark.

3.2.2.3 enableEmptySignal.
enableEmptySignal enables the empty signal to be sent back to the Service User when all
of the down-stream queues are empty.

JTRS SINCGARS Physical API
rev. 1.0

18

3.2.2.4 setNumOfPriorityQueues.
setNumOfPriorityQueues sets the number of requested queues for the downstream
packet. Zero is the lowest priority. (Note the use of this method for SINCGARS will
be made later in the design process.)

3.2.3 Receive Packet Service Group.

The SINCGARSPhysicalUpStreamUser inherits many parameters from the Packet and
Packet Signals Building Blocks. The upstream Packet contains (Figure 3-10) data
received over-the-air along with the time of the first symbol and an estimate of signal
strength. (The use of Noise Signal Strength in SINCGARS will be made later in the
design process.) If a transmit operation is in progress, the Transmit Signal Strength is
sent upstream to indicate the amount of output power.

3.2.3.1 pushPacket Service (upstream).
The pushPacket operation is used to send real-time data and control from the Physical
Layer upstream to the MAC Layer. This method identifies which priority queue the data
is destined for and identifies the time of receiving the first over-the-air symbol in the
current pushPacket.

3.2.3.2 maxPayloadSize.
maxPayloadSize defines the maximum size of Payload in octets. This item allows the
Service User to bound its internal memory usage. The Maximum Payload Size to be
supported by the SINCGARSPhysicalUpStreamUser user is 45 octets. This is a read-
only parameter.

3.2.3.3 minPayloadSize.
minPayloadSize defines the minimum size of Payload in octets. The Minimum Payload
Size to be supported by the SINCGARSPhysicalUpStreamUser is 15 octets. This is a
read-only parameter.

3.2.3.4 priority.
priority defines which priority queue the upstream packet is destined. (The
determination to use this parameter will be made later in the design process.)

3.2.3.5 hopTimeOfFirstSymbol.
hopTimeOfFirstSymbol is the time stamp when the first symbol in the pushPacket was
received.

JT
R

S SIN
C

G
A

R
S Physical A

PI
rev. 1.0

19

ControlType
PayloadType

Packet

maxPay loadSize : uns igned shor t
m i n P a y l o a d S i z e : u n s i g n e d s h o r t

pushPacket (pr ior i ty : in oc te t , cont ro l : in Cont ro lType, pay load : in Pay loadType) : vo id
spaceAvai lable(pr ior i tyQueueID : in octet) : unsigned short
enab leF lowCon t ro lS igna l s (enab le : i n boo lean) : vo id
enab leEmptyS igna l (enab le : i n boo lean) : vo id
setNumOfPr ior i tyQueues(numOfPr ior i t ies : in octet) : vo id

(f rom CommonInter faces)

<<API Building Block>>
PacketSignals

signalHighWatermark(pr ior i tyQueueID : in octet) : vo id
s ignalLowWaterMark(pr ior i tyQueueID : in octet) : vo id
signalEmpty() : void

(f rom CommonInter faces)

<<Interface>>

SINCGARSPhysicalUpStreamUser

signalError(error : in SINCGARSAPI: :CommonTypes: :PacketErrorType) : void

<<Interface>>

SINCGARSPhysicalUpStreamUserQueue
maxPay loadSize : uns igned shor t
m inPay loadS ize : uns igned sho r t

pushPacket (pr ior i ty : in octe t , cont ro l : in Phys ica lUpStreamContro lType, pay load : in SINCGARSAPI: :CommonTypes: :OctetSequence) : vo id
spaceAvai lab le(pr ior i tyQueueID : in octet) : uns igned shor t
enab leF lowCont ro lS igna ls (enab le : in boo lean) : vo id
enab leEmptyS igna l (enab le : i n boo lean) : vo id
setNumOfPrior i tyQueues(numOfPrior i t ies : in octet) : void

<<Interface>>

PhysicalUpStreamControlType
hopT imeOf fF i r s tSymbo l : S INCGARSAPI : :CommonTypes : :T imeType
no iseS igna lS t reng th : f l oa t
rece iveS igna lS t reng th : f l oa t
t ransmi tS igna lSt rength : f loa t

<<CORBAStruct>>
StreamControlType

e n d O f S t r e a m : b o o l e a n
streamID : unsigned short
sequenceNum : oc te t

(f rom CommonTypes)

<<CORBAStruct>>

Figure 3-10. Physical Layer UpStream Packet

JTRS SINCGARS Physical API
rev. 1.0

20

3.2.3.6 noiseSignalStrength.
(The determination to use this parameter will be made later in the design process.)

3.2.3.7 receiveSignalStrength.
receiveSignalStrength is the average signal strength of TBD octets of data. Zero is the
weakest signal and TBD value will represent the strongest signal strength.

3.2.3.8 transmitSignalStrength.
transmitSignalStrength is an estimate of the transmit output power. Zero is the least
output power and TBD represents the maximum output power.

3.2.3.9 streamID.
Each stream has a unique streamID (modulo the resolution of the streamID variable).
(The determination to use this parameter will be made later in the design process.)

3.2.3.10 sequenceNum.
sequenceNum identifies the order of the pushPackets within a stream. The first
pushPacket always has sequence number zero. (The determination to use this
parameter will be made later in the design process.)

3.2.3.11 endOfStream.
endOfStream identifies the last pushPacket in a stream. Note that for a short stream, a
single pushPacket contains both the streamID and the end of stream. (The
determination to use this parameter will be made later in the design process.)

3.2.3.12 payload.
payload inherits octetSequence from SINCGARSAPI::CommonTypes for transferring
data to the upstream Service User.

3.2.4 Upstream Flow Control Service Group.

This service group interrogates the space available in a specified queue and controls flow
control signals.

3.2.4.1 spaceAvailable.
spaceAvailable is inherited from the Packet BB. It requests the space currently available
in the specified priority queue in octets.

3.2.4.2 priorityQueueID.
priorityQueueID identifies the queue where space available is being interrogated.

3.2.4.3 Enable Queue Flow Control Signals.
enableFlowControlSignals enable signalHighWaterMark and signalLowWaterMark
signals to be sent back to the Physical Layer service provider when the data in any up-
stream queue exceeds the High Water Mark or goes below the Low Water Mark.

JTRS SINCGARS Physical API
rev. 1.0

21

3.2.4.4 enableEmptySignal.
enableEmptySignal enables the empty signal to be sent back to the Physical Layer service
provider when all of the upstream queues are empty.

3.2.4.5 setNumOfPriorityQueues.
setNumOfPriorityQueues sets the number of requested queues for the up-stream packet.
Zero is the lowest priority.

3.2.5 PacketSignals.

The PacketSignals class is inherited from Packet Signals BB. The methods are
signalHighWaterMark for the specified priority queue, signalLowWaterMark for the
specified priority queue, or signal all priority queues are empty.

JTRS SINCGARS Physical API
rev. 1.0

22

4 SERVICE PRIMITIVES.

This section describes the service primitives for the Physical Layer API.

4.1 NON-REAL TIME SERVICE PRIMITIVES.

Non-Real Time primitives are methods that are not time-critical for proper operation of
the SINCGARS waveform.

4.1.1 Antenna Control.

4.1.1.1 setRxAntenna.
This primitive connects the receiver to one of the available antenna connectors.

4.1.1.1.1 Synopsis.
boolean setRxAntenna (in SINCGARSAntennaType Antenna);

4.1.1.1.2 Parameters
Antenna

lists all of the available SINCGARS-compatible antennas connected to the JTRS
platform. The following assumes that antennas on connectors 1, 2, 3, and 4 are
SINCGARS compatible and that a transmit/receive switch is provided if
setRxAntenna and setTxAntenna select the same connector.

enum SINCGARSAntennaType{
AntennaConnector1;
AntennaConnector2;
AntennaConnector3;
AntennaConnector4;

}

AntennaConnector

identifies a SINCGARS-compatible antenna connector on the JTRS
platform.

4.1.1.1.3 State.
This command is valid in all non-transmitting states.

4.1.1.1.4 New State.
Selected antenna connector connected to receiver.

4.1.1.1.5 Response.
TRUE if the Rx Antenna is set as specified in the call; FALSE otherwise.

JTRS SINCGARS Physical API
rev. 1.0

23

4.1.1.1.6 Originator.
The service user. This is typically a command from the HCI.

4.1.1.1.7 Errors/Exceptions.
TBS.

4.1.1.2 setTxAntenna
This primitive connects the transmitter to one of the available antenna connectors.

4.1.1.2.1 Synopsis.
boolean setTxAntenna (in SINCGARSAntennaType Antenna);

4.1.1.2.2 Parameters.
Antenna

An enumeration type that lists all of the available SINCGARS-compatible
antennas connected to the JTRS platform. The following assumes that antennas
on connectors 1, 2, 3, and 4 are SINCGARS compatible and that a
transmit/receive switch is used if setRxAntenna and setTxAntenna select the same
connector.

enum SINCGARSAntennaType{
AntennaConnector1;
AntennaConnector2;
AntennaConnector3;
AntennaConnector4;

}

AntennaConnector

identifies a SINCGARS-compatible antenna connector on the JTRS
platform.

4.1.1.2.3 State.
This command is valid in all states except transmit.

4.1.1.2.4 New State.
Selected antenna connector connected to transmitter.

4.1.1.2.5 Response.
TRUE if the Tx Antenna is set as specified in the call, FALSE otherwise.

4.1.1.2.6 Originator.
The service user. This is typically a command from the HCI.

JTRS SINCGARS Physical API
rev. 1.0

24

4.1.1.2.7 Errors/Exceptions
None.

4.1.2 Transceiver Setup.

4.1.2.1 setUpReceiverParams.
setUpReceiverParams sets up the parameters in the Physical Layer of the transceiver that
are specific to receive but are not dependent on a specific modulation.

4.1.2.1.1 Synopsis.
boolean setUpReceiverParams (in SINCGARSRecvParamsType RecvParams);

4.1.2.1.2 Parameters.
RecvParams

struct SINCGARSRecvParamType{
unsigned short BWInKHz;
unsigned short carrierThreshold;
unsigned short bitsPerSymbol;

}

BWInKHz
selects the channel bandwidth to be 25 kHz for SINCGARS.

carrierThreshold
sets the carrier threshold for not processing incoming signals. Not used
for SINCGARS implementations.

bitsPerSymbol
is the number of bits to represent a symbol. In SINCGARS this is one.

4.1.2.1.3 State.
This command valid in all states.

4.1.2.1.4 New State.
This command causes a state change.

4.1.2.1.5 Response.
TRUE if all Receiver Parameters are set as specified in the call; FALSE otherwise.

4.1.2.1.6 Originator.
The service user.

JTRS SINCGARS Physical API
rev. 1.0

25

4.1.2.1.7 Errors/Exceptions
None.

4.1.2.2 setUpTransmitterParams.
This primitive sets up the parameters in the transceiver Physical Layer that are specific to
transmit but are not dependent on a specific modulation.

4.1.2.2.1 Synopsis.
boolean setUpTransmitterParams (in SINCGARSTransParamsType TransParams);

4.1.2.2.2 Parameters.
TransParams

sets the transmit bandwidth and the transmit envelop rise and fall times.

struct SINCGARSTransParamType{
unsigned short BWInKHz;
unsigned long offRampTime;
unsigned long onRampTime;

}

BWInKHz
selects the transmit channel bandwidth to be 25 kHz for SINCGARS.

offRampTime
is the time from the end of last data symbol on a hop (or the end of the last
symbol in a SC message) to the end of the RF envelope.

onRampTime

is the time from the beginning of the RF envelope to the start of the first
data symbol on a hop (or first symbol in a SC message).

4.1.2.2.3 State.
This command is valid in all states.

4.1.2.2.4 New State.
This command does cause a state change to the transmit envelope and bandwidth.

4.1.2.2.5 Response.
TRUE if the Transmitter Parameters are set as specified in the call, FALSE otherwise.

4.1.2.2.6 Originator.
The service user.

JTRS SINCGARS Physical API
rev. 1.0

26

4.1.2.2.7 Errors/Exceptions.
None.

4.1.2.3 getBIT Results.
getBIT returns the results of the last execution of "performBIT.

4.1.2.3.1 Synopsis.
void getBIT (out SINCGARSAPI::CommonTypes::OctetSequence BITResult);

4.1.2.3.2 Parameters.
BITResult

is the result of the last performBIT. An error is returned if BIT has not been
executed since waveform instantiation.

4.1.2.3.3 State.
This command is valid in test mode only.

4.1.2.3.4 New State.
This command does cause a state change.

4.1.2.3.5 Response.
Returns results of last BIT test.

4.1.2.3.6 Originator.
The service user.

4.1.2.3.7 Errors/Exceptions.
None.

4.1.2.4 performBIT.
peformBIT invokes BIT at the Physical layer.

4.1.2.4.1 Synopsis.
void performBIT{in unsigned long BITIdentifier);

4.1.2.4.2 Parameters.
BITIdentifier

identifies which BIT test is to be executed now.

4.1.2.4.3 State.
This command is valid in test mode only.

JTRS SINCGARS Physical API
rev. 1.0

27

4.1.2.4.4 New State.
This command causes a state change.

4.1.2.4.5 Response.
None.
4.1.2.4.6 Originator.
The service user.

4.1.2.4.7 Errors/Exceptions.
None.

4.1.3 Modulation Setup.

4.1.3.1 setUpReceiverModulation.
This primitive sets up the parameters in the Physical Layer of SINCGARS that are
specific to reception of a specific modulation.

4.1.3.1.1 Synopsis.
boolean setUpReceiverModulation (in SINCGARSRecvModType RecvMod);

4.1.3.1.2 Parameters.
RecvMod

sets up the FM and FSK demodulation peak-to-peak deviation parameters.

union SINCGARSRecvMod{
FMVoiceType RxFMVoiceMod;
FSKType RxFSKMod;

}

struct FMVoiceType{
VoiceDeviationType VoiceDeviation;
ToneDeviationType ToneDeviation;

}

struct VoiceDeviationType{
unsigned short MinDevkHz;
unsigned short MaxDevkHz;

}

MinDevkHz
is 16 kHz peak-to-peak at maximum deviation.

MaxDevkHz
is 22 kHz peak-to-peak at maximum deviation.

JTRS SINCGARS Physical API
rev. 1.0

28

struct ToneDeviationType{
unsigned short MinDevHz;
unsigned short MaxDevHz;

}

MinDevHz
is 6500 Hz peak-to-peak.

MaxDevkHz
is 7500 Hz peak-to-peak.

struct FSKType{
unsigned short MinDevHz;
unsigned short MaxDevHz;

}

MinDevHz
is 9500 Hz peak-to-peak maximum deviation.

MaxDevHz
is 14000 Hz peak-to-peak maximum deviation.

4.1.3.1.3 State.
This command is valid in non-transmitting states.

4.1.3.1.4 New State.
This command causes a state change.

4.1.3.1.5 Response.
TRUE if the Transmitter Modulation is set as specified in the call; FALSE otherwise.

4.1.3.1.6 Originator.
The service user.

4.1.3.1.7 Errors/Exceptions.
None.

4.1.3.2 setUpTransmitModulation.
This primitive sets up the parameters in the Physical Layer of SINCGARS that are
specific to transmitting.

4.1.3.2.1 Synopsis.
boolean setUpTransmitterModulation (in SINCGARSTransModType TransMod);

JTRS SINCGARS Physical API
rev. 1.0

29

4.1.3.2.2 Parameters.
TransMod

sets the maximum and minimum peak-to-peak deviation for the transmitter.

union SINCGARSTransModType{
FMVoiceType TxFMVoiceMod;
FSKType TxFSKMod;

}

struct FMVoiceType{
VoiceDeviationType VoiceDeviation;
ToneDeviationType ToneDeviation;

}

struct VoiceDeviationType{
unsigned short MinDevkHz;
unsigned short MaxDevkHz;

}
MinDevkHz

is 16 kHz peak-to-peak at maximum deviation.

MaxDevkHz
is 22 kHz peak-to-peak at maximum deviation.

struct ToneDeviationType{
unsigned short MinDevHz;
unsigned short MaxDevHz;

}

MinDevHz
is 6500 Hz peak-to-peak.

MaxDevkHz
is 7500 Hz peak-to-peak.

struct FSKType{
unsigned short MinDevHz;
unsigned short MaxDevHz;

}

MinDevHz
is 9500 Hz peak-to-peak maximum deviation.

MaxDevHz
is 14000 Hz peak-to-peak maximum deviation.

JTRS SINCGARS Physical API
rev. 1.0

30

4.1.3.2.3 State.
This command is valid in all non-transmitting states.

4.1.3.2.4 New State.
This command causes a state change to the new settings.

4.1.3.2.5 Response.
boolean

TRUE if the Transmitter Modulation is set as specified in the call; FALSE
otherwise.

4.1.3.2.6 Originator.
The Service User.

4.1.3.2.7 Errors/Exceptions.
None.

4.1.4 Radio Mode.

4.1.4.1 setRadioMode.
This primitive sets the mode of the radio Physical Layer to Off, Standby, Operate, or
Test.

4.1.4.1.1 Synopsis.
boolean setRadioMode (in SINCGARSRadioModeType RadioMode);

4.1.4.1.2 Parameters.
RadioMode

sets the radio to be one of four enumerated modes.

enum SINCGARSRadioModeType{
Off;
Standby;
Operate;
Test;

}

Off

means that the waveform is no longer active on the transceiver.

Standby

means that all TRANSEC, Crypto, and other variables are maintained, but
transmit or receive is not allowed. Typically a low power mode.

JTRS SINCGARS Physical API
rev. 1.0

31

Operate

is normal operation, transmit and receive operations allowed.

Test

is a special mode of the radio to verify correct operation. Normal transmit
and receive are disabled, but test transmit and test receive can occur.

4.1.4.1.3 State.
This command operates in all states.

4.1.4.1.4 New State.
The methods cause changes in state. The new state is specified in the command.

4.1.4.1.5 Response.
boolean

TRUE if the Radio Mode is set correctly; FALSE otherwise.

4.1.4.1.6 Originator.
This primitive is initiated by the Service User, normally through the Human Computer
Interface (HCI).

4.1.4.1.7 Errors/Exceptions.
None.

4.1.5 Receive Termination.

Drop capture and abort receive are two ways to terminate the receive process.

4.1.5.1 Drop Capture.
Drop Capture zeros all state variables relating to the current signal reception and
demodulation and transitions into the transmit state.

4.1.5.1.1 Synopsis.
boolean dropCapture ();

4.1.5.1.2 Parameters.
None.

4.1.5.1.3 State.
This command is valid in non-transmitting states. If the transceiver is not actively
receiving a message, the radio directly transitions into transmit state.

JTRS SINCGARS Physical API
rev. 1.0

32

4.1.5.1.4 New State.
This command causes a state change to transmit.

4.1.5.1.5 Response.
TRUE, if current reception is terminated or if the transceiver is not actively receiving;
FALSE, if an active receive is not terminated.

4.1.5.1.6 Originator.
The service user.

4.1.5.1.7 Errors/Exceptions.
None.

4.1.5.2 abortReceive.
abortReceive turns off the receive operation.

4.1.5.2.1 Synopsis.
boolean abortReceive ();

4.1.5.2.2 Parameters.
This primitive has no parameters.

4.1.5.2.3 State.
This command is valid in all states.

4.1.5.2.4 New State.
This command causes a state change.

4.1.5.2.5 Response.
TRUE, if receiver disabled; FALSE, if receiver not disabled.

4.1.5.2.6 Originator.
The service user.

4.1.5.2.7 Errors/Exceptions.
None.

4.1.6 Transmit Inhibit.

This is the method normally used by the JTRS radio platform to invoke radio silence on
this waveform.

JTRS SINCGARS Physical API
rev. 1.0

33

4.1.6.1 inhibitTransmit.
inhibitTransmit inhibits transmitting in the JTRS platform using this waveform instance.

4.1.6.1.1 Synopsis.
 boolean inhibitTransmit (in boolean Inhibit);

4.1.6.1.2 Parameters.
Inhibit

stops all waveform transmissions functions when enabled. Normal transmit
operations resume when disabled.

4.1.6.1.3 State.
This command is valid in all states.

4.1.6.1.4 New State.
This command causes the waveform on the JTRS platform to go into radio silence.

4.1.6.1.5 Response.
TRUE if radio silence is achieved for the waveform transmitter; FALSE otherwise.

4.1.6.1.6 Originator.
The service user.

4.1.6.1.7 Errors/Exceptions.
None.

4.1.7 Physical Management.

Physical Management has two read-only parameters (determined at set up time) which
define the minimum and maximum number of Transmission Units(TUs) the Physical
Layer can accept for one over-the-air transmission. The TU is measured in octets. The
minimum and maximum TUs are not adjustable parameters.

4.1.7.1 getMinTU.
Read the minimum transmission unit accepted by the Physical Layer for one over-the-air
transmission.

4.1.7.1.1 Synopsis.
unsigned short getMinTU ();

4.1.7.1.2 Parameters.
minTU

is returned by the getMinTU call. It is the minimum number of TUs allowed in
one over-the-air transmission. For SINCGARS this is 45 octets.

JTRS SINCGARS Physical API
rev. 1.0

34

4.1.7.1.3 State.
This command valid in all states. This is a read-only parameter set at waveform
instantiation.

4.1.7.1.4 New State.
This command does not cause a state change.

4.1.7.1.5 Response.
The size of the minimum TU that may be sent to the Physical Layer for one over-the-air
transmission.

4.1.7.1.6 Originator.
The service user

4.1.7.1.7 Errors/Exceptions.
None.

4.1.7.2 getMaxTU.
Read the maximum transmission unit (TU) that will be accepted by the Physical Layer.

4.1.7.2.1 Synopsis.
Unsigned short getMaxTU ();

4.1.7.2.2 Parameters.
maxTU

is returned by the getMaxTU call. It is the maximum number of TUs allowed in a
one over-the-air transmission. The maximum size TU for SINCGARS is 180
octets. This parameter is ignored in continuous transmit modes.

4.1.7.2.3 State.
This command is valid in all states

4.1.7.2.4 New State.
This command does not cause a state change.

4.1.7.2.5 Response.
The size of the maximum TU.

4.1.7.2.6 Originator.
The service user.

4.1.7.2.7 Errors/Exceptions
None.

JTRS SINCGARS Physical API
rev. 1.0

35

4.2 REAL TIME SERVICE PRIMITIVES.

The Physical Real Time Packet Service is used to pass time-critical control and data to
and from the Physical Layer. This service inherits from both the Packet Building Block
and the PacketSignals Building Block. The error signals will be defined during detailed
design. Since control and data are transferred to and from the Physical Layer, both a
downstream Service provider interface and an upstream User interface are provided.
(Downstream is transferring data toward the antenna while upstream is transferring data
away from the antenna.)

4.2.1 Transmit Packet Service Group.

This group is serviced by the SINCGARSPhysicalDownStreamProvider interface.

4.2.1.1 pushPacket Service (downstream).
pushPacket is the method to move real-time data and control information into the
Physical Layer.

4.2.1.1.1 Synopsis.
void pushPacket (

in octet priority;
in PhysicalDownStreamControlType transmitControl;
in SINCGARSAPI::CommonTypes::OctetSequence payload;

);

4.2.1.1.2 Parameters.
priority

determines which priority queue the packet is destined (0 is lowest priority).

(The use of this parameter for SINCGARS will be determined later in the
design.)

transmitControl

is inherited from the real-time Physical Building Block as defined below. One of
its functions is to concatenate several data packets into one data stream as
required. It is also supplies hop time of the first symbol and the new operating
frequency.

(The use of this parameter for SINCGARS will be determined later in the
design.))

struct PhysicalDownStreamControlType {

SINCGARSAPI::CommonTypes::TimeType
hopTimeOffFirstSymbol;

unsigned long frequencyInHz;

};

JTRS SINCGARS Physical API
rev. 1.0

36

hopTimeOfFirstSymbol

defines the local platform time at which the transmit of the first
symbol in the pushPacket is to begin.

frequencyInHz

is the new operating frequency in Hertz which will be invoked a
predetermined number of nanoseconds before
hopTimeOfFirstSymbol. Zero frequency implies no frequency
change.

struct StreamControlType{
boolean endOfStream;
unsigned short streamID;
octet sequenceNumber;

};

endOfStream

indicates this packet is the last packet in the stream.

streamID

is the same for all packets in the same stream. It is
different for different streams (to the extent modulo
unsigned short allows).

sequenceNumber

defines the location of the packet within the stream. The
first packet has sequence number zero to indicate Start of
Stream.

4.2.1.1.3 State.
If flow control signals are enabled, the primitive can be invoked until a high water mark
is signaled.

If flow control signals are disabled, the Service User is responsible for ensuring the
Service Provider has queue space available prior to invoking pushPacket.

4.2.1.1.4 New State.
If the current pushPacket operation raises the Provider’s queue to its high water mark, a
high water mark signal will be returned.

4.2.1.1.5 Response
Upon receipt of a High Water Mark Signal, the Service User will inhibit further
invocations of pushPacket until a Low Water Mark Signal or Empty Signal is signaled by
the Service Provider.

JTRS SINCGARS Physical API
rev. 1.0

37

4.2.1.1.6 Originator.
For downstream pushPacket, it is the Service User.

4.2.1.1.7 Errors/Exceptions.
None.

4.2.1.2 maxPayloadSize
maxPayloadSize is the maximum number of octets a Service Provider will accept in the
Payload (data part) of a Packet. This is a read-only attribute, which can be read anytime;
but is only set during Physical Layer instantiation. The Service User is obligated to
constrain Payload length to be equal to or less than this size.

4.2.1.2.1 Synopsis.
attribute unsigned short maxPayloadSize;

maxPayloadSize is an attribute whose "Get" function is auto-generated.

4.2.1.2.2 Parameters.
maxPayloadSize

is the maximum number of data octets allowed in a single SINCGARS
Physical downstream pushPacket. This does not include information in
the control field of the pushPacket.

4.2.1.2.3 State.
Can be read anytime. The value is set at waveform instantiation and can not be changed.

4.2.1.2.4 New State.
Establishes Service User’s maximum data payload size.

4.2.1.2.5 Response.
None.

4.2.1.2.6 Originator.
None.

4.2.1.2.7 Errors/Exceptions.
None.

4.2.1.3 minPayloadSize
minPayloadSize is the minimum number of octets, acceptable to the Service Provider, in
a Packet’s Payload. This is a read-only attribute, which is set during Physical Layer
instantiation. It can be read anytime; but it can not be changed. The Service User is
obligated to ensure Payload length is at least this size.

4.2.1.3.1 Synopsis.
attribute unsigned short minPayloadSize;

minPayloadSize is an attribute whose "Get" function is auto-generated.

JTRS SINCGARS Physical API
rev. 1.0

38

4.2.1.3.2 Parameters.
minPayloadSize

is the minimum number of data octets allowed in a single SINCGARS
Physical layer downstream Push Packet. This does not include
information in the control field of the same Push Packet.

4.2.1.3.3 State.
Can be read anytime. The value is set at waveform instantiation and can not be changed.

4.2.1.3.4 New State.
None.

4.2.1.3.5 Response.
None.

4.2.1.3.6 Originator.
Service User.

4.2.1.3.7 Errors/Exceptions.
None.

4.2.1.4 spaceAvailable Service.
A Service Provider can provide multiple queues, each having a different priority. This
read-only attribute provides a Service User with the amount of space available, in octets,
in the queue designated by priorityQueueID.

4.2.1.4.1 Synopsis.
unsigned short spaceAvailable (in octet priorityQueueID);

spaceAvailable is an attribute whose "Get" function is auto-generated.

4.2.1.4.2 Parameters.
priorityQueueID

specifies which priority queue is being interrogated.

4.2.1.4.3 State.
Valid in all states.

4.2.1.4.4 New State.
No state change.

4.2.1.4.5 Response.
The return value is the space available in the Service Provider’s queue designated by the
priority queue ID.

4.2.1.4.6 Originator.
Downstream Service User.

4.2.1.4.7 Errors/Exceptions.
None.

JTRS SINCGARS Physical API
rev. 1.0

39

4.2.1.5 enableFlowControlSignals Service.
enableFlowControlSignals enables the Service Provider to send high water mark and low
water mark signals back to the Service User for queues of all priorities.

4.2.1.5.1 Synopsis.
void enableFlowControlSignals (in boolean enable);

4.2.1.5.2 Parameters.
enable

TRUE: permits high water mark and low water mark signals to be sent back to
the downstream Service User for all priority queues.

FALSE: high water mark and low water mark signals are not provided by the
Service Provider.

4.2.1.5.3 State.
Valid in all states.

4.2.1.5.4 New State.
Water mark signals either enabled or disabled.

4.2.1.5.5 Response.
None.

4.2.1.5.6 Originator.
Downstream Service User.

4.2.1.5.7 Errors/Exceptions.
None.

4.2.1.6 enableEmptySignalService.
enableEmptylSignal enables the Service Provider to send an empty signal back to the
Service User when all priority queues are empty.

4.2.1.6.1 Synopsis.
void enableEmptySignal (in booleanenable);

4.2.1.6.2 Parameters.
enable

TRUE: enables the empty signal to be sent back to the downstream Service User
when all queues are empty.

FALSE: prevents the empty signal from being sent back.

4.2.1.6.3 State.
Valid when all priority queues are empty and empty signal is enabled.

4.2.1.6.4 New State.
No change.

JTRS SINCGARS Physical API
rev. 1.0

40

4.2.1.6.5 Response.
The Service Provider sends an empty signal to the Service User when all priority queues
are empty.

4.2.1.6.6 Originator.
Downstream Service User.

4.2.1.6.7 Errors/Exceptions.
None.

4.2.1.7 setNumOfPriorityQueues Service.
setNumOfPriorityQueues specifies the number of queues to be used at the downstream
Service Provider.

4.2.1.7.1 Synopsis.
void setNumOfPriorityQueues (in octet numOfPriorities);

4.2.1.7.2 Parameters.
numOfPriorities

specifies the number of priority queues to be provided by the downstream Service
Provider.

4.2.1.7.3 State.
Any State.

4.2.1.7.4 New State.
The new number of queues provided by the SINCGARSPhysicalDownStreamProvider
equals the value of numOfPriorities.

4.2.1.7.5 Response.
None.

4.2.1.7.6 Originator.
Downstream Service User.

4.2.1.7.7 Errors/Exceptions.
None.

4.2.2 Receive Packet Service Group

This group is serviced by the SINCGARSUpStreamUser interface.

4.2.2.1 pushPacket Service (upstream).
pushPacket is the method to send real time data and control information out of the
Physical Layer to the Service User. The Service User is typically the MAC Layer.

4.2.2.1.1 Synopsis.
void pushPacket {

JTRS SINCGARS Physical API
rev. 1.0

41

in octet priority;
in PhysicalUpStreamControlType control;
in SINCGARSAPI::CommonTypes::OctetSequence payload;

};

4.2.2.1.2 Parameters.
priority

determines which priority queue the packet is destined (0 is lowest priority).

(The use of this parameter for SINCGARS will be determined later in the
design.)

control

can concatenate several pushPackets into one data stream as required. It is also
supplies hop time of the first received symbol in the pushPacket, the received
signal strength, and transmit output power level as required.

(The use of this parameter for SINCGARS will be determined later in the
design.)

struct PhysicalUpStreamControlType{
SINCGARSAPI::CommonTypes::TimeType hopTimeOfFirstSymbol;
float noiseSignalStrength;
float receiveSignalStrength;
float transmitSignalStrength;
streamControlType streamControl;
}

hopTimeOfFirstSymbol

is the local time corresponding to the start of reception of the first
symbol in the pushPacket.

noiseSignalStrength

is in dB.

receiveSignalStrength

is the received signal power. Zero represents the minimum
received signal power; TBD represents the maximum received
signal power. If no signal is present, this parameter represents the
noise power on frequency.

transmitSignalStrength

is the estimated transmit output power. Zero is minimum power
output and TBD is the maximum output power.

JTRS SINCGARS Physical API
rev. 1.0

42

streamControl

struct StreamControlType{
boolean endOfStream;
unsigned short streamID;
octet sequenceNumber;

}

endOfStream

indicates that this packet is the last packet in the stream.

streamID

is the same for all packets in the same stream. It is
different for different streams (to the extent modulo
unsigned short allows).

sequenceNumber

defines the location of the packet within the stream. The
first packet has sequence number zero to indicate Start of
Stream.

4.2.2.1.3 State.
If flow control signals are enabled, the primitive can be invoked until a high water mark
is signaled.

If flow control signals are disabled, the Service User is responsible for ensuring the
Service Provider has queue space available prior to invoking pushPacket.

4.2.2.1.4 New State.
If the current pushPacket operation raises the Provider’s queue to its high water mark, a
high water mark signal will be returned.

4.2.2.1.5 Response.
Upon receipt of a High Water Mark Signal, the Service User will inhibit further
invocations of pushPacket until a Low Water Mark Signal or Empty Signal is signaled by
the Service Provider.

4.2.2.1.6 Originator.
UpStream pushPacket, it is the Service provider.

4.2.2.1.7 Errors/Exceptions.
None.

JTRS SINCGARS Physical API
rev. 1.0

43

4.2.2.2 maxPayloadSize.
maxPayloadSize is the maximum number of octets a Service Provider will accept in the
Payload (data part) of a Packet. This is a read-only attribute, which can be read anytime;
but is only set during Physical Layer instantiation. The Service User is obligated to
constrain Payload length to be equal to or less than this size.

4.2.2.2.1 Synopsis.
attribute unsigned short maxPayloadSize;

maxPayloadSize is an attribute whose "Get" function is auto-generated.

4.2.2.2.2 Parameters.
maxPayloadSize

is the maximum number of data octets allowed in a single SINCGARS
Physical upsteam pushPacket. This does not include information in the
control field of the pushPacket.

4.2.2.2.3 State.
Can be read anytime. The value is set at waveform instantiation and can not be changed.

4.2.2.2.4 New State.
Establishes Service User’s maximum data payload size.

4.2.2.2.5 Response.
None.

4.2.2.2.6 Originator.
None.

4.2.2.2.7 Errors/Exceptions.
None.

4.2.2.3 minPayloadSize.
minPayloadSize is the minimum number of octets, acceptable to the Service Provider, in
a Packet’s Payload. This is a read-only attribute, which is set during Physical Layer
instantiation. It can be read anytime; but it can not be changed. The Service User is
obligated to ensure Payload length is at least this size.

4.2.2.3.1 Synopsis.
attribute unsigned short minPayloadSize;

minPayloadSize is an attribute whose "Get" function is auto-generated.

4.2.2.3.2 Parameters.
minPayloadSize

is the minimum number of data octets allowed in a single SINCGARS
Physical layer upstream pushPacket. This does not include information in
the control field of the same pushPacket.

JTRS SINCGARS Physical API
rev. 1.0

44

4.2.2.3.3 State.
Can be read anytime. The value is set at waveform instantiation and can not be changed.

4.2.2.3.4 New State.
Establishes Service User’s minimum data payload size.

4.2.2.3.5 Response.
None.

4.2.2.3.6 Originator.
None.

4.2.2.3.7 Errors/Exceptions.
None.

4.2.2.4 spaceAvailableService.
A Service Provider can provide multiple queues, each having a different priority. This
read-only attribute provides a Service User with the amount of space available, in octets,
in the queue designated by priorityQueueID.

4.2.2.4.1 Synopsis.
unsigned short spaceAvailable (in octet priorityQueueID);

spaceAvailable is an attribute whose "Get" function is auto-generated

4.2.2.4.2 Parameters
priorityQueueID

specifies which priority queue is being interrogated.

4.2.2.4.3 State.
Valid in all states.

4.2.2.4.4 New State.
No state change.

4.2.2.4.5 Response.
The return value is the space available in the Service Provider’s queue designated by the
priority queue ID.

4.2.2.4.6 Originator.
Downstream Service User.

4.2.2.4.7 Errors/Exceptions.
None.

4.2.2.5 enableFlowControlSignals Service.
enableFlowControlSignals enables the Service Provider to send high water mark and low
water mark signals back to the Service User for queues of all priorities.

JTRS SINCGARS Physical API
rev. 1.0

45

4.2.2.5.1 Synopsis.
void enableFlowControlSignals (in boolean enable);

4.2.2.5.2 Parameters.
enable

TRUE: permits high water mark and low water mark signals to be sent back to
the upstream Physical Service User for all priority upstream queues.

FALSE: high water mark and low water mark signals are not provided by the
Service Provider.

4.2.2.5.3 State.
Valid in all states.

4.2.2.5.4 New State.
Water mark signals either enabled or disabled.

4.2.2.5.5 Response.
None.

4.2.2.5.6 Originator.
Up stream, Service Provider.

4.2.2.5.7 Errors/Exceptions.
None.

4.2.2.6 enableEmptySignal Service.
enableEmptylSignal enables the Service Provider to send an empty signal back to the
Service User when all priority queues are empty.

4.2.2.6.1 Synopsis
void enableEmptySignal (in booleanenable);

4.2.2.6.2 Parameters.
enable

TRUE: enables the empty signal to be sent back to the downstream Service User
when all up-stream queues are empty.

FALSE: prevents the empty signal from being sent back.

4.2.2.6.3 State.
Valid when all up-stream queues are empty and the empty signal is enabled.

4.2.2.6.4 New State.
 No change

4.2.2.6.5 Response.
 The Service Provider sends an empty signal to the Service User when all priority queues
are empty.

JTRS SINCGARS Physical API
rev. 1.0

46

4.2.2.6.6 Originator.
Downstream Service User.

4.2.2.6.7 Errors/Exceptions.
None.

4.2.2.7 setNumOfPriorityQueues Service.
setNumOfPriorityQueues specifies the number of queues to be used at the downstream
Service Provider.

4.2.2.7.1 Synopsis.
void setNumOfPriorityQueues (in octet numOfPriorities);

4.2.2.7.2 Parameters.
numOfPriorities,

specifies the number of priority queues to be provided at the upstream Service
User.

4.2.2.7.3 State.
Any State.

4.2.2.7.4 New State.
The new number of queues provided by the SINCGARSPhysicalUpStreamUser equals
the value of numOfPriorities.

4.2.2.7.5 Response.
None.

4.2.2.7.6 Originator.
Downstream Service User.

4.2.2.7.7 Errors/Exceptions.
None.

JTRS SINCGARS Physical API
rev. 1.0

47

5 ALLOWABLE SEQUENCE OF SERVICE PRIMITIVES.

There are no defined sequences of primitives.

JTRS SINCGARS Physical API
rev. 1.0

48

6 UTILIZATION OF MAC BUILDING BLOCKS.

Refer to the following table describing MAC building blocks.

Services Parameters SINCGARS
SC-PT

SINCGARS
All Except

SC-PT
Antenna
Control

setRxAntenna
setTxAntenna

Yes Yes

Transceiver
Setup

setReceiverParmeters
setTransmiterParameters

No No

Modulation
Setup

setUPReceiverModulation
setUpTransmitterModulation

Yes Yes

Media Setup setUpMediaType Yes Yes
RadioMode setRadioMode Yes Yes
Receive
Termination

dropCapture
dropReceive

Yes Yes

Transmit
Inhibit

inhibitTransmit No No

Physical
Management

getMaxTU
getMinTU

Yes Yes

JTRS SINCGARS Physical API
rev. 1.0

49

7 PRECEDENCE OF SERVICE PRIMITIVES.

Precedence of primitives are described in section 3, where required.

8 SERVICE USER GUIDELINES.

No guidelines for implementing a Service User that will be independent of the
implementation of the Service Provider have been identified.

9 SERVICE PROVIDER-SPECIFIC INFORMATION.

No specific information for a service provider implementation has been identified.

JTRS SINCGARS Physical API
rev. 1.0

50

10 IDL.

The following describes the IDL software program.

10.1 COMMON TYPES.

//Source file: H:/JTRS/SYSJTRS/api/rose
models/ITTBBIDL/CommonTypesModules.idl

#ifndef __COMMONTYPESMODULES_DEFINED
#define __COMMONTYPESMODULES_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

module SINCGARSAPI {

module CommonTypes {

enum ServiceErrorType {
ERROR_BAD_SAP,
ERROR_BAD_ADDRESS,
ERROR_NO_ACCESS,
ERROR_INVALID_STATE,
ERROR_BAD_CORRELATION,
ERROR_BAD_DATA,
ERROR_UNSUPPORTED,
ERROR_NOT_ENABLED,
ERROR_TOO_MANY,
ERROR_BOUND,
ERROR_NO_AUTO,
ERROR_NO_XIDAUTO,
ERROR_NO_TESTAUTO,
ERROR_NO_ADDRESS,
ERROR_BAD_QOS_PARAMETERS,
ERROR_UNDELIVERABLE

};

/* Identify this data stream for acknowledgement
processing, cancelation of transmission,etc. */

struct StreamControlType {
unsigned short streamID;
/* Indicates that the last symbol of this hop is an
end of stream. */
boolean endOfStream;
/* Sequence number of the hop within the stream
sequence. The waveform application sets this value
to zero at every occurrence of a start of stream. If
value is set to zero it indicates beginning of
stream. */
octet sequenceNum;

};

JTRS SINCGARS Physical API
rev. 1.0

51

struct TimeType {
unsigned long seconds;
unsigned long nanoSec;

};

struct BeepType {
short BeepLevelIndB;
unsigned short DurationInMs;
unsigned short FrequencyInHz;

};

typedef unsigned short IdType;

struct DescriminatorType {
unsigned short DataTypeDescriminator;
unsigned short BeepTypeDescriminator;
unsigned short AlarmTypeDescriminator;
unsigned short SeedInfoDescriminator;

};

enum ErrType {
PktUsageErr,
PktErrNo

};

union PacketErrorType switch(ErrType) {
case PktUsageErr:

SINCGARSAPI::CommonTypes::ServiceErrorType
usageError;

case PktErrNo: unsigned long errNo;
};

typedef sequence<octet> OctetSequence;

};

};

#endif

JTRS SINCGARS Physical API
rev. 1.0

52

10.2 COMMON INTERFACES.

//Source file: H:/JTRS/SYSJTRS/api/rose
models/ITTBBIDL/CommonInterfacesModules.idl

#ifndef __COMMONINTERFACESMODULES_DEFINED
#define __COMMONINTERFACESMODULES_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

module SINCGARSAPI {

module CommonInterfaces {

interface ChannelErrorControl {
/*
@roseuid 39EB177F0102 */
void channelErrorControl (

in boolean ErrorControl
);

};

interface DropCapture {
/*
@roseuid 39C643F203D4 */
boolean dropCapture ();

};

interface ReceiveTermination {
/*
@roseuid 39D0073C0171 */
boolean dropCapture ();

/*
@roseuid 39D0ADCC0174 */
boolean abortReceive ();

};

interface PhysicalManagement {
attribute unsigned short minTU;
attribute unsigned short maxTU;

};

interface TransmitInhibit {
/*
@roseuid 39D0B62B0021 */
boolean inhibitTransmit (

in boolean Inhibit
);

};

JTRS SINCGARS Physical API
rev. 1.0

53

interface PacketSignals {
/* This operation is a call event back to the
PacketAPI client indicating that a queue has reach
the high watermark. If priority or multiple queues
are being supported then the priorityQueueID
indicates which queue has reached the high watermark.
@roseuid 38F3442F01B8 */
oneway void signalHighWatermark (

in octet priorityQueueID
);

/* This operation is a call event back to the
PacketAPI client indicating that the queue has reach
the low watermark. If priority or multiple queues
are being supported then this indicates that the sum
total of all the queues has reached the low
watermark.
@roseuid 38F3446F025A */
oneway void signalLowWaterMark (

in octet priorityQueueID
);

/* This operation is a call event back to the
PacketAPI client indicating that the queue has
emptied. If priority or multiple queues are being
supported then this indicates that the sum total of
all the queues has reached zero.
@roseuid 38FE26CF02FA */
oneway void signalEmpty ();

};

interface AudioControl {
attribute boolean SidetoneEnabled;
attribute short MicrophoneGainIndB;
attribute boolean AudioOutputEnabled;
attribute short OutputGainIndB;

/*
@roseuid 39ECA7A50255 */
void enableRTSAndCTS (

in boolean Enable
);

/*
@roseuid 39ECA7C601B2 */
void setCTS (

in boolean CTS
);

};

interface AudiodeviceSignals {
/*
@roseuid 39E4A192016E */
void SignalRTS (

JTRS SINCGARS Physical API
rev. 1.0

54

in boolean RTS
);

};

};

};

#endif

JTRS SINCGARS Physical API
rev. 1.0

55

10.3 NON-REAL TIME.

//Source file: H:/JTRS/SYSJTRS/api/rose models/ITTBBIDL/NRTPhysical.idl

#ifndef __NRTPHYSICAL_DEFINED
#define __NRTPHYSICAL_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "CommonTypesModules.idl"
#include "CommonInterfacesModules.idl"

module SINCGARSAPI {

module NRTPhysical {

module AntennaControl {

enum SINCGARSAntennaType {
AntennaConnector1,
AntennaConnector2,
AntennaConnector3,
AntennaConnector4

};

/* <Unspecified> */

interface SINCGARSAntennaControl {
/*
@roseuid 39DB196E0031 */
boolean setRxAntenna (

in SINCGARSAntennaType Antenna
);

/*
@roseuid 39DB196E0047 */
boolean setTxAntenna (

in SINCGARSAntennaType Antenna
);

};

};

module TRANCEIVERSetup {

struct SINCGARSRecvParamsType {
unsigned short bitsPerSymbol;
unsigned short carrierThreshold;
unsigned short BWInkHz;

};

struct SINCGARSTransParamsType {
unsigned short BWInkHz;

JTRS SINCGARS Physical API
rev. 1.0

56

unsigned long offRampTime;
unsigned long onRampTime;

};

interface SINCGARSTranscieverSetup {
attribute boolean BIT;

/*
@roseuid 39DB1D78017A */
boolean setUpReceiverParams (

in SINCGARSRecvParamsType RecvParams
);

/*
@roseuid 39DB1D780184 */
boolean setUpTransmitterParams (

in SINCGARSTransParamsType TransParams
);

/*
@roseuid 39DB72750168 */
void getBIT (

out
SINCGARSAPI::CommonTypes::OctetSequence
BITResult
);

/*
@roseuid 39DB72D9037F */
void performBIT (

in unsigned long BITIdentifier
);

};

};

module ModulationSetUp {

struct ToneDeviationType {
unsigned short MaxDevHz;
unsigned short MinDevHz;

};

struct VoiceDeviationType {
unsigned short MinDevkHz;
unsigned short MaxDevkHz;

};

struct FSKType {
unsigned short MaxDevHz;
unsigned short MinDevHz;

};

struct FMVoiceType {
VoiceDeviationType VoiceDeviation;

JTRS SINCGARS Physical API
rev. 1.0

57

ToneDeviationType ToneDeviation;
};

enum RecvModDiscriminator {
RxFMVoice,
RxFSK

};

union SINCGARSRecvModType
switch(RecvModDiscriminator) {

case RxFSK: FSKType RxFSKMod;
case RxFMVoice: FMVoiceType RxFMVoiceMod;

};

enum TransModDiscriminator {
TxFMVoice,
TxFSK

};

union SINCGARSTransModType
switch(TransModDiscriminator) {

case TxFSK: FSKType TxFSKMod;
case TxFMVoice: FMVoiceType TxFMVoiceMod;

};

interface SINCGARSModulationSetup {
/*
@roseuid 39DB260101A3 */
boolean setUpReceiverModulation (

in SINCGARSRecvModType RecvMod
);

/*
@roseuid 39DB260101A5 */
boolean setUpTransmitterModulation (

in SINCGARSTransModType TransMod
);

};

};

module RadioMode {

enum SINCGARSRadioModeType {
Off,
Standby,
Operate,
Test

};

interface SINCGARSRadioMode {
/*
@roseuid 39DB2FB101F0 */
boolean setRadioMode (

in SINCGARSRadioModeType RadioMode

JTRS SINCGARS Physical API
rev. 1.0

58

);

};

};

module ReceiveTermination {

interface SINCGARSReceiveTermination :
CommonInterfaces::ReceiveTermination {

};

};

module TransmitInhibit {

interface SINCGARSTransmitInhibit :
CommonInterfaces::TransmitInhibit {

};

};

module PhysicalManagement {

interface SINCGARSPhysicalManagement :
CommonInterfaces::PhysicalManagement {

};

};

};

};

#endif

JTRS SINCGARS Physical API
rev. 1.0

59

10.4 REAL TIME.

//Source file: H:/JTRS/SYSJTRS/api/rose models/ITTBBIDL/RTPhysical.idl

#ifndef __RTPHYSICAL_DEFINED
#define __RTPHYSICAL_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "CommonTypesModules.idl"
#include "CommonInterfacesModules.idl"

module SINCGARSAPI {

module RTPhysical {

module PhysicalPacketTransfer {

struct PhysicalDownStreamControlType {
SINCGARSAPI::CommonTypes::TimeType
hopTimeOffFirstSymbol;

unsigned long frequencyInHz;
};

struct PhysicalUpStreamControlType {
SINCGARSAPI::CommonTypes::TimeType
hopTimeOffFirstSymbol;

float noiseSignalStrength;
float receiveSignalStrength;
float transmitSignalStrength;

};

interface SINCGARSPhysicalDownStreamProviderQueue {
/* The maxPacketSize is a read only attribute set by
the Packet Server and the get operation reports back
the maximum number of traffic units allowed in one
pushPacket call. */

attribute unsigned short maxPayloadSize;
attribute unsigned short minPayloadSize;

/* This operation is used to push Client data
to the Server with a Control element and a
Payload element.
@roseuid 39DC9D5A0114 */
void pushPacket (

in octet priority,
in PhysicalDownStreamControlType

transmitControl,
in SINCGARSAPI::CommonTypes::
 OctetSequence payload
);

JTRS SINCGARS Physical API
rev. 1.0

60

/* The operation returns the space available in
the Servers queue(s) in terms of the
implementers defined Traffic Units.
@roseuid 39DC9D5A011E */
unsigned short spaceAvailable (

in octet priorityQueueID
);

/* This operation allows the client to turn the
High Watermark Signal ON and OFF.
@roseuid 39DC9D5A0120 */
void enableFlowControlSignals (

in boolean enable
);

/* This operation allows the client to turn
theEmpty Signal ON and OFF.
@roseuid 39DC9D5A0129 */
void enableEmptySignal (

in boolean enable
);

/*
@roseuid 39DC9D5A0132 */
void setNumOfPriorityQueues (

in octet numOfPriorities
);

};

interface SINCGARSPhysicalDownStreamProvider :
SINCGARSPhysicalDownStreamProviderQueue,
CommonInterfaces::PacketSignals {
};

interface SINCGARSPhysicalUpStreamUserQueue {
/* The maxPacketSize is a read only attribute set by
the Packet Server and the get operation reports back
the maximum number of traffic units allowed in one
pushPacket call. */

attribute unsigned short maxPayloadSize;
attribute unsigned short minPayloadSize;

/* This operation is used to push Client data
to the Server with a Control element and a
Payload element.
@roseuid 39E4BE9B0302 */
void pushPacket (

in octet priority,
in PhysicalUpStreamControlType control,
in SINCGARSAPI::CommonTypes::
 OctetSequence payload
);

JTRS SINCGARS Physical API
rev. 1.0

61

/* The operation returns the space available in
the Servers queue(s) in terms of the
implementers defined Traffic Units.
@roseuid 39E4BE9B030E */
unsigned short spaceAvailable (

in octet priorityQueueID
);

/* This operation allows the client to turn the
High Watermark Signal ON and OFF.
@roseuid 39E4BE9B0317 */
void enableFlowControlSignals (

in boolean enable
);

/* This operation allows the client to turn
theEmpty Signal ON and OFF.
@roseuid 39E4BE9B033F */
void enableEmptySignal (

in boolean enable
);

/*
@roseuid 39E4BE9B0349 */
void setNumOfPriorityQueues (

in octet numOfPriorities
);

};

interface SINCGARSPhysicalUpStreamUser :
SINCGARSPhysicalUpStreamUserQueue,
CommonInterfaces::PacketSignals {

/*
@roseuid 39E4C119018D */
void signalError (

in SINCGARSAPI::CommonTypes::
 PacketErrorType error
);

};

};

module CommandReceive {

struct SINCGARSRxCommandType {
SINCGARSAPI::CommonTypes::TimeType
hopTimeOffFirstSymbol;
unsigned long frequencyInHz;

};

interface SINCGARSReceiveCommand {
/*
@roseuid 39E357C1023D */
void receive (

JTRS SINCGARS Physical API
rev. 1.0

62

in SINCGARSRxCommandType SINCGARScontrol
);

};

};

};

};

#endif

JTRS SINCGARS Physical API
rev. 1.0

63

11 UML.

UML diagrams are provided in section 3, as appropriate.

